Synaptic plasticity of the CA3 commissural projection in epileptic rats: an in vivo electrophysiological study.
نویسندگان
چکیده
The hippocampal commissural system has recently been found to participate in the generation of mirror foci after kainate-induced epileptiform discharges. In the present study we have evaluated the electrophysiological alterations in the ventral commissural hippocampal system that originates in the pyramidal CA3 cells and connects to the contralateral CA3 pyramidal cells. The recordings were performed in epileptic rats 24 h after an early behavioural spontaneous seizure between 5 and 21 days after pilocarpine-induced status epilepticus. Epileptic animals presented a marked increase in neuronal excitability after contralateral CA3 stimulation, characterized by a shift to the left in the input-output curve and the clear appearance of a population spike. Input-output curves showed that maximum population excitatory postsynaptic potential (pEPSP) amplitude was decreased by 30%, which could be related to cell death in these regions. Using paired-pulse protocols to evaluate a fast form of synaptic plasticity (i.e. paired-pulse facilitation) we observed that, despite the similar pEPSP amplitude between control and experimental groups, only epileptic animals showed strong paired-pulse population spike facilitation up to 500 ms interstimulus intervals. Despite increased excitability and pyramidal cell death, epileptic animals presented a more robust potentiation after high-frequency stimulation than controls, a protocol used to evaluate a slow form of synaptic plasticity (i.e. long-term potentiation). The increased excitability in CA3 pyramidal neurons enhanced the probability of burst activity in these neurons; this could lead to greater CA1 synchronization. The present results might have relevance for the understanding of epileptogenesis and of learning and memory deficits seen in temporal lobe epilepsy.
منابع مشابه
Lavandula angustifolia extract improves deteriorated synaptic plasticity in an animal model of Alzheimer’s disease
Objective(s):Neurodegenerative Alzheimer’s disease (AD) is associated with profound deficits in synaptic transmission and synaptic plasticity. Long-term potentiation (LTP), an experimental form of synaptic plasticity, is intensively examined in hippocampus. In this study we evaluated the effect of aqueous extract of lavender (Lavandula angustifolia) on induction of LTP in the CA1 area of hippoc...
متن کاملAllicin attenuates tunicamycin-induced cognitive deficits in rats via its synaptic plasticity regulatory activity
Objective(s): To illuminate the functional effects of allicin on rats with cognitive deficits induced by tunicamycin (TM) and the molecular mechanism of this process. Materials and Methods: 200–250 g male SD rats were divided into three groups at random: control group (n=12), TM group (5 μl, 50 μM, i.c.v, n=12), and allicin treatment group (180 mg/kg/d with chow diet, n=12). After 16 weeks of a...
متن کاملDifferentiation in the protein synthesis-dependency of persistent synaptic plasticity in mossy fiber and associational/commissural CA3 synapses in vivo
Long-term potentiation (LTP) and long-term depression (LTD) are two mechanisms involved in the long-term storage of information in hippocampal synapses. In the hippocampal CA1 region, the late phases of LTP and LTD are protein-synthesis dependent. In the dentate gyrus, late-LTP but not LTD requires protein synthesis. The protein synthesis-dependency of persistent plasticity at CA3 synapses has ...
متن کاملDevelopmental effect of light deprivation on synaptic plasticity of rats' hippocampus: implications for melatonin
Objective(s): There are few reports have demonstrated the effect of a change-in-light experience on the structure and function of hippocampus. A change-in-light experience also affects the circadian pattern of melatonin secretion. This study aimed to investigate developmental effect of exogenous melatonin on synaptic plasticity of hippocampus of light deprived rats. Materials and Methods: The ...
متن کاملRepeated administration of cannabinoid receptor agonist and antagonist impairs short and long term plasticity of rat’s dentate gyrus in vivo
Introduction: The effects of cannabinoids (CBs) on synaptic plasticity of hippocampal dentate gyrus neurons have been shown in numerous studies. However, the effect of repeated exposure to cannabinoids on hippocampal function is not fully understood. In this study, using field potential recording, we investigated the effect of repeated administration of the nonselective CB receptor agonist WIN5...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The European journal of neuroscience
دوره 25 10 شماره
صفحات -
تاریخ انتشار 2007